Python Tools for Coding and Feature Learning; SciPy 2013 Presentation Published 2013-07-02 Download video MP4 360p Recommendations 27:38 Головні новини про космос, які ви могли пропустити через події на Землі 05:14 Ex-US ambassador breaks down where Putin ‘failed’ in Tucker Carlson interview 52:47 Bayesian Modeling with R and Stan (Reupload) 20:04 CPK - czemu tak to trudno zrozumieć? 54:56 Terence Tao, "Machine Assisted Proof" 09:21 Why I Use Golang In 2024 1:33:08 Robots Are After Your Job: Exploring Generative AI for C++ - Andrei Alexandrescu - CppCon 2023 32:02 Jacques Vallée, Ph.D. on the UFO Phenomenon being a Genuine Scientific Problem 15:38 Did JWST Solve The Mystery of Supermassive Black Hole Origins? 2:51:58 Introduction to Numerical Computing With NumPy - Logan Thomas | SciPy 2022 13:53 Dask and Optuna for Hyper Parameter Optimization 13:22 Representing Signals in Python (Sampling) 1:13:15 Семинар по обсуждению работы с библиотекой Optuna. Практика по машинному обучению. 1:08:17 Roman Orus - News on tensor Networks for machine learning and quantum computing simulation 58:07 Aligning LLMs with Direct Preference Optimization 29:19 JSON, TOML, YML? No! Apples New Config Lang! 31:03 RustConf 2023 - Implementing a Blazingly Fast Quantum State Simulator in Rust 05:05 Model + Simulate Spring Mass in Python 14:02 When Companies Secretly Use Their Rivals’ Products Similar videos 21:50 A comprehensive look at representing physical quantities in Python; SciPy 2013 Presentation 17:33 A Gentle Introduction To Machine Learning; SciPy 2013 Presentation 24:16 Skdata: Data sets and algorithm evaluation protocols in Python; SciPy 2013 Presentation 18:34 Python and the SKA; SciPy 2013 Presentation 55:31 S Shankar Introduction to machine learning using Python tools 24:31 Breaking the diffraction limit with python and scipy; SciPy 2013 Presentation 23:03 XDress - Type, But Verify; SciPy 2013 Presentation 13:22 vIPer, a new tool to work with IPython notebooks; SciPy 2013 Presentations 43:35 SciPy 2013 Keynote: IPython: the method behind the madness 21:56 Julia and Python: a dynamic duo for scientific computing; SciPy 2013 Presentation 24:49 High Performance Reproducible Computing; SciPy 2013 Presentation 24:01 The advantages of a scientific IDE; SciPy 2013 Presentation 21:38 An efficient workflow for reproducible science; SciPy 2013 Presentation 27:57 Hyperopt: A Python library for optimizing machine learning algorithms; SciPy 2013 17:43 Accessing the Virtual Observatory from Python; SciPy 2013 Presentation 25:07 Matplotlib: past, present and future; SciPy 2013 Presentation More results